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An important application of diode lasers in the standards community is the development of the next
generation of frequency/wavelength references, where semiconductor laser technology will enable higher
performance in portable, inexpensive, and reliable systems. At NIST we are working on an all-diode-laser,
optical frequency reference based on the 'S,-°P, intercombination line in Ca at 657 nm. This transition is one
of those recommended for the realization of the meter, and its absolute frequency has been measured with an
uncertainty of 450 Hz, the most precise of any visible reference.’

Our work has addressed several important challenges. First of all, we have stabilized the frequency
of a 657 nm extended-cavity diode laser to <100 Hz to allow resolution of the 400 Hz natural linewidth of
this transition. Second, we have implemented a master-oscillator power-amplifier (MOPA) at 657 nm in
order to produce 20 mW of usable light needed for spectroscopy of this weak transition. Finally, we have
generated 35 mW of light at 423 nm (through frequency doubling of an 846 nm high power diode laser) and
used it in a magneto-optic trap (MOT) which can provide samples of up to 2x10” Ca atoms. The use of
trapped atoms for our spectroscopic sample offers the extended interaction time needed for sub-kilohertz
resolution and greatly reduced systematic effects. With this system we have observed Ca resonances as
narrow as 6 kHz and should be able to reduce this further in the very near future.

To generate the frequency-stabilized light at 657 nm (see Figure 1), we start with a grating-tuned
extended-cavity diode laser (ECDL), which yields 3 mW output power and a laser linewidth of ~100 kHz.
After passing the beam through an optical isolator (50 dB isolation), we split the light into two paths, one for
frequency stabilization and the other for spectroscopy. In the first path, 1 mW of light goes through a double-
passed acousto-optic modulator (AOM) (for precise tuning of the laser frequency) to a high finesse Fabry-
Perot cavity (50 kHz fringe linewidth). Our cavity consists of two mirrors optically contacted to a ultra-low
expansion (ULE) spacer, which is placed inside a thermally and vibrationally isolated vacuum can. Using
FM optical heterodyne techniques we derive an error signal which we filter and then feed back to the diode
laser current (to correct fast laser frequency fluctuations) and to a PZT on the laser feedback mirror (to -
correct slow drifts). With the laser locked, the error signal indicates residual frequency fluctuations of
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< 100 Hz. In the second path we send 1.3 mW to injection-seed a MOPA, so we can increase the power for
the spectroscopy. This MOPA system produces 240 mW at 657 nm and adds negligible frequency noise to
the light. As a first test of this system we sent the MOPA output through an optical fiber to an optical
Ramsey fringe spectrometer, which used four interaction zones with a Ca atomic beam to probe the 'S,-*P,
(m=0-m=0) transition. With 8 mW of probe power we were able to obtain Ramsey lineshapes with good
contrast and a high signal-to-noise ratio. Figure 2 shows a scan taken at 11.5 kHz resolution with a data
acquistion time of 1 minute to average 40 scans. Our resolution was limited by the fast atom transit time and
the geometry of our setup. Using this lineshape as a reference we were able to characterize the long term
stability of our frequency-stabilized diode laser system.

To achieve higher resolution we have constructed a Ca MOT. Previously, three Ca MOTs have been
demonstrated, all of which used dye lasers at 423 nm to trap atoms from a slowed atomic beam.>*> In order
to have a simpler, more compact system, we have designed a Ca trap apparatus which uses frequency-
doubled diode laser light for cooling and trapping. As shown in Figure 3, a grating-tuned ECDL provides
stable tunable light, which we use to injection lock a high-power slave diode laser. 5 mW of injection power
produces 150 mW of slave output at 846 nm. We correct the slave laser’s astigmatic and asymmetric spatial
mode with an anamorphic prism pair and a cylindrical lens. After passing this beam through an optical
isolator, we have 105 mW incident on a ring build-up cavity containing a 1 cm KNbO, non-linear crystal.
With a build-up factor of ~20 we generate 35 mW of stable 423 nm light.

For our atom trap, we modified a simple MOT design demonstrated for lithium* (and recently for
calcium by workers at PTB?) which relies on trapping atoms directly from a short (12 cm) atomic beam. We
find that adding a single-frequency slowing beam along the atomic beam axis leads to an 8-fold increase in
the number of trapped atoms. We collect about 2x10’ atoms with the trap light detuned 35 MHz red of the
1S,-'P, cooling transition and a magnetic field gradient of 12 mT/cm. Figure 4 shows a trapped sample of
>10% Ca atoms, one of the first demonstrations of laser trapping with frequency-doubled diode lasers. We
have performed optical Ramsey spectroscopy upon the trapped atoms and have obtained features as narrow
as 6 kHz, suitable for use as a high precision frequency reference.
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Figure 3 Frequency-doubling of 846 nm diode laser light ~ Figure 4 Ca MOT using frequency-
to generate 35 mW of 423 nm cooling light. doubled diode lasers. The central bright
spot is fluorescence from >10° atoms.
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